
Hacking / Exploiting / cheating in

Online Games

 Shahin Ramezany
www.abysssec.com
shahin@abysssec.com
Twitter : @abysssec

http://www.abysssec.com/
mailto:shahin@abysssec.com

Who am I ?

CTO AT Abysssec

Doing some :

. Next Generation hacking

. Exploit-development

. Reversing

. Web-Audit

What is this talk about ?

I. This talk is about hacking / exploiting
cheating in online games

II. real world Cheating is mainly focused in this
talk, because it’s fun and legal, During this
talk we will have a tour into all of ways to
manipulating an online game and we will end up
with bypassing latest anti-cheating technologies
and manipulating the game to our heart's
desire.

III. After this talk you can go and play a bit and
test your learned lesson.

Agenda

Part I : introduction

Part II : Hacking Online Game Servers

Part III : Exploiting Online Games

Part IV : Cheating in Online games

Part V : Creating your own cheats

Part VI : Bypassing anti-cheat engines

Part I : Introduction

Why Exploit/Hack Online Games?

. Why not ?

. Millions of players around

. Cheating make you a p0rnstar in games

. Impress your friends

. Get some unique insults as well !!

State of Online games !

. Counter-Strike

. Current Server : 94,964

. Player Minute in month : 51,576

. Current Unique Players :

 2,834,131 / per month !

State of Online games !

. Word Of Warcraft (WoW)

. Current Player: 12 million

State of Online games !

. Call of duty (COD)

. Current Player: 14 million

Hacking VS. Exploiting VS. Cheating

1- Hacking

For Hacking a game server / client you can
use normal penetration testing ways .

Server :

 . Normal network based attacks

 . Our lovely web based attacks

Client :

 . Social engineering family

 . SET / Metasploit

 . Exploits / Bots / Key loggers / Custom

 Malware , Trojans ,,,,

Hacking VS. Exploiting VS. Cheating

2- Exploiting

For Exploiting game server / client you can
use normal ways to audit both server /
client .

 Server :

 . Fuzzing

 . Reverse Engineering

 . Code audit

Client :

 . Same as server but in servers you should

 try to fuzz protocol but for client you

 Should focus on game imports from client

Hacking VS. Exploiting VS. Cheating

3- Cheating

Cheating is a bit different in some case
even if you PWN the server or client you
can not use silent and cool cheats on
servers

Server :

 . Sending crafted packets for changing some

 functionality in game (depends on server)

Client :

 . Changing game models and add custom ones

 . Using Bots for automating gaming tasks

 (play with AI)

 . Using game features against it !

Part II: Hacking Online Games

Hacking online games

As I already said for hacking a game server
we can use available methods for
penetration testing projects.

Most simplest example is finding a gaming
portal (used for players statics , game
server states, etc.) PWN the portal then
PWN the game. Due to lots of game
portals have permission to game database
hence you may see lots of them use root
or SA for their game servers.

Hacking online games

Here is just some example of vulnerable
Gaming CMSs

 Mafia Game Script SQL injection Vulnerability

 mygamingladder MGL Combo System <= 7.5 game.php SQL injection Exploit

 Chipmunk Pwngame Multiple SQL Injection Vulnerabilities

 Joomla Component Gamesbox com_gamesbox 1.0.2 (id) SQL Injection Vulnerability

 Eyeland Studio Inc. (game.php) SQL Injection Vulnerability

 PHP Gamepage SQL Injection Vulnerability

 Games Script (Galore) Backup Dump Vulnerability

 GameScript v3.0 SQL Injection Vulnerability

Even the CMS itself does not have access to
Game server the CMS admin mostly have.

Hacking online games

We found a simple one in IGaming CMS
during MOAUB and didn’t report it.

Hacking online games

Really Old-School Blind SQL Injection in
iGamingCMS in gamedetails.php

Sounds like still 0day but I call it garbage
0day.

gamedetails.php file line 32:

$result = $db->Execute("SELECT * FROM `sp_games` WHERE `id` = '$_REQ

UEST[id]' LIMIT 1");

PoC :

http://lamesite.com:/iGamingCMS/gamedetails.php?id=[Inject the code here]

Hacking online games

I Found a similar bug in online charging
game portal that lead me to completely
PWN the server. You can search and do
similar things like me .

But there is an important note : most of
these server hacking styles are possible in
PUBLIC / PRIVATE game servers, not the
main game developer server.

For hacking main developer servers you have
to do much more .

E.G : blizzard server is that easy to PWN.

Part III: Exploiting Online Games

Exploiting online games

1337 stuff. Exploiting online games as I
have already said, is like finding
vulnerability and exploiting normal
applications, so normal attacks works for
game engines too. But the most important
thing you should know about vulnerability
discovery and exploiting online games, is
where games receive INPUTS.

Basically if you are not a player it’s not
clear for you. But at least all of games
have some parsers for input files and
packets.

Exploiting online games

A Normal game (with capability of
multiplying) at least will have following
inputs :

. Network packets (for all playing stuff)

. Save games / stats / scripts

. Models and items

. Levels and maps

. Maybe movies and sounds

. And so on …

Exploiting online games

Unlike a normal program when you are
auditing a game maybe you have to pass
some simple or advanced encryptions.

. Packed / protected binaries

. Encrypted network packets

. Encrypted models , levels saves , items

. Encrypted sounds , movies

. Maybe movies and sounds

. And other encrypted stuff.

Exploiting online games

Here is some games those use encryption
for their packets :

 . Half-life

 . Halo

 . GS4

 . Call of duty

 . World of Warcraft

 . …

Exploiting online games
void hlenc(unsigned char *buff, unsigned int pcksz) {

 #define HL_NTOHL(x) \

 ((((x) & 0xff000000) >> 24) | \

 (((x) & 0x00ff0000) >> 8) | \

 (((x) & 0x0000ff00) << 8) | \

 (((x) & 0x000000ff) << 24))

 const static unsigned char hlhash[] =

 "\x05\x61\x7A\xED\x1B\xCA\x0D\x9B\x4A\xF1\x64\xC7\xB5\x8E\xDF\xA0";

 unsigned char *ptrebpc;

 unsigned int *lbuff = (unsigned int *)buff,

 pcknum,

 invnum,

 ebpc;

 int cont,

 i;

 if(pcksz < 9) return;

 pcknum = *buff;

 invnum = ~pcknum;

 pcksz = (pcksz - 8) >> 2;

 lbuff += 2;

 cont = 0;

 while(pcksz--) {

 ebpc = *lbuff ^ invnum;

 ebpc = HL_NTOHL(ebpc);

 ptrebpc = (unsigned char *)&ebpc;

 for(i = 0; i < 4; i++) {

 *ptrebpc ^= (((hlhash[(cont + i) & 0xf] | (i << i)) | i) | 0xA5);

 ptrebpc++;

 }

 *lbuff = ebpc ^ pcknum;

 lbuff++;

 cont++;

 }

}

Exploiting online games
void hldec(unsigned char *buff, unsigned int pcksz) {

 #define HL_NTOHL(x) \

 ((((x) & 0xff000000) >> 24) | \

 (((x) & 0x00ff0000) >> 8) | \

 (((x) & 0x0000ff00) << 8) | \

 (((x) & 0x000000ff) << 24))

 const static unsigned char hlhash[] =

 "\x05\x61\x7A\xED\x1B\xCA\x0D\x9B\x4A\xF1\x64\xC7\xB5\x8E\xDF\xA0";

 unsigned char *ptrebpc;

 unsigned int *lbuff = (unsigned int *)buff,

 pcknum,

 invnum,

 ebpc;

 int cont,

 i;

 if(pcksz < 9) return;

 pcknum = *buff;

 invnum = ~pcknum;

 pcksz = (pcksz - 8) >> 2;

 lbuff += 2;

 cont = 0;

 while(pcksz--) {

 ebpc = *lbuff ^ pcknum;

 ptrebpc = (unsigned char *)&ebpc;

 for(i = 0; i < 4; i++) {

 *ptrebpc ^= (((hlhash[(cont + i) & 0xf] | (i << i)) | i) | 0xA5);

 ptrebpc++;

 }

 *lbuff = HL_NTOHL(ebpc) ^ invnum;

 lbuff++;

 cont++;

 }

}

Exploiting online games

Finding vulnerabilities in games is not totally
new stuff, Luigi Auriemma is most active
researcher (that I know) in hunting
vulnerabilities in game engines.

Some examples :

Invalid memory access in Unreal Tournament 3 2.1

Failed assertion in old games based on Unreal engine

Two vulnerabilities in Ghost Recon Advanced Warfighter 1 and 2

Clients unicode buffer-overflow in Unreal engine 2.5

Negative memcpy in id Tech 4 engine

Buffer-overflow in the Electronic Arts games that use Gamespy

Files uploading vulnerabilities in the Source engine (build 3933 and 3950)

Format string in Crysis 1.21 and Crysis Wars/Warhead 1.5

Half-Life broadcast client's buffer-overflow (versions 1.1.1.0)

Half-Life servers: buffer-overflow and freeze (versions 1.1.1.0, 4.1.1.1c1 and 3.1.1.1c1)

Exploiting online games

You can even see some really old-school
vulnerabilities in game engines. A bug found
by Luigi in 2004 in unreal engine \secure
packet.

Both code execution and spoof where
possible by using this vulnerability.

send a similar UDP packet to the query port of the game server:

\secure\aaa...aaaa

Exploiting online games

Unfortunately, there is no exploit mitigation
available is most of games. Due to lack of
OS exploit mitigation , Exploiting games
even in most modern systems is not hard.

No DEP+ASLR in half-life  

Exploiting online games

Finally if you understand game algorithms
for sending / receiving packets and pass
encryptions correctly, you still can find
great vulnerabilities using fuzzing and static
analysis.

Part IV: Cheating in Online Games

Cheating in online games

Why we should do cheat instead of playing
like a good person ?

Cheating in online games

Because it’s better than cheating friend.

Cheating in online games

And because we can’t cheat death.

Cheating in online games

Because you can get $$$ from cheating.
people will pay for working cheats in
multiplayer online games

Cheating in online games

How to create cheat for games ? When you
are not dealing with online games, cheating
is not that hard. All you should do is find
values in memory and then freeze or change
them.

 . Health
 . Money

 . Ammo

 . Time

 . And even functionalities like :

 . Jump

 . Speed

 . Fly

 . Swim

 . And so on …

Cheating in online games

For finding values you can use differential-
reversing or simple and great available
tools. The best tool I know is Cheat-
Engine which is free and open source.

Cheating in online games

What is cheat-engine?

Cheat Engine is an open source tool designed to help you
with modifying single player games running under windows so
you can make them harder or easier depending on your
preference(E.G: Find that 100hp is too easy, try playing a
game with a max of 1 HP), but also contains other useful
tools to help debugging games and even normal applications.

It comes with a memory scanner to quickly scan for variables
used within a game and allow you to change them, but it also
comes with a debugger, disassembler, assembler, speedhack,
trainer maker, direct 3D manipulation tools, system inspection
tools and more.

Cheating in online games

Will this cheat-engine and other kind of
cheating programs work on online games ?

In most case answer is clear:

NO !!!

Cheating in online games

Also for packet editing there is a really
simple program called WPE-Pro.

Cheating in online games

Basically WPE-Pro in just a real time
sniffer and packet editor and due to being
easy to use is popular . It used widely for
game hacking even in Online games. But
when hack will be done using the packets
server will fix it too. Let’s see a real
example in World of Warcraft.

Cheating in online games

First you need find a pattern and then
change the value some values are just
BOOLS and need to change 1-0 or 0-1 .

Cheating in online games

Here is an example for buying any item
without money.

Cheating in online games

Will this kind of hacks still works ? Maybe
YES in some private servers but in main
servers the answer is AGAIN :

 NO !!!

Cheating in online games

Why these doesn’t work or worked for a
while ?

 . Anti-cheats (like exploit mitigations)

 . some checks are server side only

 . CRC-checks and anti-modifications

 . Patching patterns

 . Because even cheats are not free !!

Cheating in online games

So what is the solution ?

Creating your OWN cheat !!!

Part V: Creating your own cheats

Creating your own cheat

Before going forward we should know what
kind of hacks we can do in multiplayer
online games ? Most of silent and popular
hacks we can do are:

 . Wallhack

 . AutoAim

 . Sky/Water/flash/smoke removal

 . Speed hacks

 . ESP

 . Fly Hack

 . Model modification

 . …

Creating your own cheat

In this section we want to talk about
creating custom cheats for Counter Strike
game . We will go steps from scratch to
making reliable cheat for game. For making
cheating specially for online games there is
some important factors :

 . what game server know about cheat?

 . how many checks are server side ?

 . What we can do on client ?

 . If it detect the cheats how will do it?

Creating your own cheat

Warning : Counter strike is tactical first
person shooter game and is amazingly
addictive !

Creating your own cheat

Wall hack :

Wallhacking allows a player to see through solid or opaque objects and/or

manipulate or remove textures, to know in advance when an opponent is about

to come into targeting range from an occluded area. This can be done by

making wall textures transparent, or modifying the game maps to insert

polygonal holes into otherwise solid walls.

As with the aimbot, wallhacking relies on the fact that an FPS server usually

sends raw positional information for all players in the game, and leaves it up to

the client's 3D renderer to hide opponents behind walls, in plant foliage, or in

dark shadows. If the game map rendering could be turned off completely, all

players could be seen moving around in what appears to be empty space.

Complete map hiding offers no advantage to a cheater as they would be unable

to navigate the invisible map pathways and obstacles. However if only certain

surfaces are made transparent or removed, this leaves just enough of an

outline of the world to allow the cheater still to navigate it easily.

Creating your own cheat

Wall hack example :

Can you see guy beyond wall ?

Creating your own cheat

Aimbot (autoAim) :

An aimbot (sometimes called "auto-aim") is a type of computer game bot used

in multiplayer first-person shooter games to provide varying levels of target

acquisition assistance to the player. While most common in first person shooter

games, they exist in other game types and are often used in combination with a

TriggerBot, which shoots automatically when an opponent appears within the

field-of-view or aiming reticule of the player.

Aimbotting relies on the fact that each client computer must be typically sent

information about all players, whether seen or unseen. Targeting is simply a

matter of finding the position difference of where the player is located and

where any opponent is located, and pointing the player's weapon at the target.

This targeting works regardless of whether the opponent is behind walls or too

far away to be seen directly.

Creating your own cheat

By default when you run the game and
create a server, a few things will be
checked (for example when you playing
from LAN) and you can do a lot of
modifications from your client. But for
modification, you should know what you want
modify. So first step in every game hacking
is playing the game.

Creating your own cheat

For example after a bit playing you will
understand there a cross-hair for every
guns except AWP and SCOUT

Creating your own cheat

So one of the modifications would be
adding a NICE cross-hair to these guns.
But how ?

First step is find the gun model. So we can
search the valve folder for AWP. After a
while, you’ll end up with v_awp.mdl. Now
how we can do modification on it ? Just
search for a model editor. I found jed’s
half-life model editor by a bit of
searching.

Creating your own cheat

Jed’s half-life model editor and AWP.

Creating your own cheat

AWP with Crosshairs ! You can decompile
models using mdlsec.exe

Creating your own cheat

After recompiling model you can restart
game and see what you did in game .

As you can see the added crosshair.

Creating your own cheat

The most important thing here is local
server didn’t detect our modification. So
we can do a lot of more by using
modification; but there is a question. Won’t
it detect other model modifications?

What about if we remove flash-bang and
smoke models completely?

Creating your own cheat

So I removed all models those have
flashbang in their name and restart the
game and I got a fatal error about it .

So the game didn’t detect modification but
detects removing objects. What about
patching checks in game ?

Creating your own cheat

Ok, we know we can do modification, but
how we can implement for example Wallhack
by ourselves and inject it to game ?

The answer is simple. we should write our
Wallhack as a DLL and inject it into the
game. Next question is how we can write
Wallhack? The answer is again simple; you
should know a bit about game developing
really, really a BIT ! Or patch the process
for it.

Creating your own cheat

Here is code for patching HL.exe for a
sample wallhack .

void WallHackRipped()

{

 BYTE Patch[]={0x68, 0x71, 0x0B, 0x00 , 0x00 , 0xFF , 0x15 , 0x5C , 0x89 , 0x7E , 0x02};

 BYTE Original[] = {0x68, 0x04, 0x04, 0x00, 0x00, 0xFF, 0x15, 0x50, 0x88, 0x7E, 0x02};

 DWORD HLBase = (DWORD) GetModuleHandle(NULL);

 DWORD Addr1 = HLBase + 0x99098C;

 DWORD Addr2 = HLBase + 0x94663E;

 switch (isWallHackActivated)

 {

 case TRUE:

 memcpy((LPVOID) Addr1, Patch, 0xB);

 memcpy((LPVOID) Addr2, Patch, 0xB);

 break;

 case FALSE:

 memcpy((LPVOID) Addr1, Original, 0xB);

 memcpy((LPVOID) Addr2, Original, 0xB);

 break;

 }

}

Creating your own cheat

And here is the code for wallhack without
patching hl.exe using API hooking.

void WINAPI MyglBegin(DWORD dwMode)

{

 typedef float GLfloat;

 GLfloat col[4];

 BOOL isSmoke = false;

 if ((dwMode == GL_TRIANGLE_STRIP) || (dwMode == GL_TRIANGLE_FAN))

 {

 switch (isWallHackActivated)

 {

 case TRUE:

 // disables wallhack

 glDisable(GL_DEPTH_TEST);

 break;

Creating your own cheat
 case FALSE:

 // enables wallhack

 glEnable(GL_DEPTH_TEST);

 break;

 }

 }

else

 {

 glEnable(GL_DEPTH_TEST);

 }

pglBegin(dwMode);

}

Creating your own cheat

How to inject it to game ? The simplest
way is using CreateRemoteThread API.

/***/

BOOL InjectDll(DWORD pid, LPTSTR dllname)

{

 LPVOID hRemoteMem;

 HANDLE hProcess, hRemoteThread;

 HMODULE hModule;

 //open remote process

 if((hProcess =
OpenProcess(PROCESS_CREATE_THREAD|PROCESS_VM_OPERATION|PROCESS_VM_WRITE|PROCESS_VM_READ, FALSE, pid)) == NULL)

 {

 printf("Injection: OpenProcess failed\n");

 return FALSE;

 }

Cont’d in next slide.

Creating your own cheat
//allocate memory in remote process

 if((hRemoteMem = VirtualAllocEx(hProcess, NULL, strlen(dllname), MEM_RESERVE|MEM_COMMIT,
PAGE_READWRITE)) == NULL)

 {

 printf("Injection: VirtualAllocEx failed\n");

 return FALSE;

 }

 //copy the dll name to memory allocated in the remote processes' address space

 if(!WriteProcessMemory(hProcess, hRemoteMem, (LPVOID)dllname, strlen(dllname), NULL)) {

 printf("Injection: WriteProcessMemory failed\n");

 VirtualFreeEx(hProcess, hRemoteMem, strlen(dllname), MEM_RELEASE|MEM_DECOMMIT);

 return FALSE;

 }

 //need kernel32's handle for call to CreateRemoteThread()

 hModule = GetModuleHandle("KERNEL32.DLL");

 //create thread in remote process, passing the address of LoadLibraryA for the thread's entry point

 //and the address of the DLL's pathname as an argument to the thread

 hRemoteThread = CreateRemoteThread(hProcess, NULL, 0,
(LPTHREAD_START_ROUTINE)GetProcAddress(hModule, "LoadLibraryA"), hRemoteMem, 0, NULL);

 if(hRemoteThread == NULL) {

 printf("Injection: CreateRemoteThread failed\n");

 VirtualFreeEx(hProcess, hRemoteMem, strlen(dllname), MEM_RELEASE|MEM_DECOMMIT);

 return FALSE;

 }

Cont’d in next slide

Creating your own cheat
 //cleanup

 WaitForSingleObject(hRemoteThread, WAIT_TIMEOUT);

 VirtualFreeEx(hProcess, hRemoteMem, strlen(dllname),
MEM_RELEASE|MEM_DECOMMIT);

 CloseHandle(hProcess);

 return TRUE;

}

Here was simplest injector using
CreateRemoteThread if you search a bit you can
find tones of working codes .

Creating your own cheat
 //cleanup

 WaitForSingleObject(hRemoteThread, WAIT_TIMEOUT);

 VirtualFreeEx(hProcess, hRemoteMem, strlen(dllname),
MEM_RELEASE|MEM_DECOMMIT);

 CloseHandle(hProcess);

 return TRUE;

}

Here was simplest injector using
CreateRemoteThread if you search a bit you can
find tones of working codes .

Creating your own cheat

Object removal : for removing functionality
of an object you need first detect that
object; for example flash / smoke or …
also you should be aware of conflicts
during removing an object. Here is simplest
flash / smoke hack for counter strike .

Creating your own cheat

To do this, again we need to hook opengl
functions. this time let’s use disassembler I
used Beaengine.

BOOL WINAPI HookFunctionDis(LPCSTR lpModule, LPCSTR lpFuncName, LPVOID lpNewFunction)

{

 // Getting the address of AP

 DWORD OriginalFunction = (DWORD)GetProcAddress(GetModuleHandle(lpModule), lpFuncName);

 HOOK_DATA *hinfo = GetHookInfoFromFunction(OriginalFunction);

 if (hinfo)

 {

 OutputDebugString("Already Hooked!");

 return FALSE;

 }

Cont’d in next slide

Creating your own cheat

 DWORD BridgeAddr = CreateBridge(OriginalFunction, 6);

 HookData[NumberOfHooks].Function = OriginalFunction;

 HookData[NumberOfHooks].Hook = (DWORD) lpNewFunction;

 HookData[NumberOfHooks].Bridge = BridgeAddr;

 // Replaces the start of API with PUSH xxxx , RET

 BYTE JUMP[6] = { 0x68,

 0x00, 0x00, 0x00, 0x00,

 0xc3

 };

 // Address of our new API (MyCreateProcessAW)

 DWORD dwCalc = (DWORD)lpNewFunction;

 // Building PUSH MyAPI, RET

 memcpy(&JUMP[1],&dwCalc, 4);

 // Writing PUSH MyAPI

 if (WriteProcessMemory(GetCurrentProcess(), (LPVOID)OriginalFunction, JUMP, 6, 0))

 {

 NumberOfHooks++;

 return TRUE;

 }

 else

 {

 MessageBox(NULL, "Unable to hook", "Error...", MB_ICONSTOP);

 return FALSE;

 }

}

Creating your own cheat
 void WINAPI MyglVertex3fv(const GLfloat *v)

{

 if (isSmoke==false)

 {

 typedef void (WINAPI *LPFNglVertex3fv)(const GLfloat *);

 LPFNglVertex3fv pglVertex3fv = (LPFNglVertex3fv) GetOriginalFunction((ULONG_PTR)
MyglVertex3fv);;

 pglVertex3fv(v);

 }

 else

 OutputDebugString("Smoke detected");

}

if (dwMode == GL_QUADS)

 {

 glGetFloatv(GL_CURRENT_COLOR, col);

 switch(isSmokeHackActivated)

 {

 case TRUE:

 if(col[0] == col[1] && col[1] == col[2] && col[2] == 1.0f)

 isSmoke = true;

 break;

 case FALSE:

 isSmoke=false;

 break;

 }

Creating your own cheat

As we said it’s possible to hack and patch
game functionalities . Here is our patch for
free nightvision forever.

 isNightVisionActivated = TRUE;

 __asm

 {

 push eax

 mov eax, 0x1957ea9

 mov byte ptr [eax], 0x75

 pop eax

 }

 break;

 case TRUE:

 isNightVisionActivated = FALSE;

 __asm

 {

 push eax

 mov eax, 0x1957ea9

 mov byte ptr [eax], 0x74

 pop eax

 }

 break;

 }

Creating your own cheat

DEMO
Cheating in
Lan !!!

Part VI: Bypassing anti-cheat

engines

Bypassing anti-cheat engines

Nice ! But will these kind of hacks work in
online servers ? The answer is again:

NO !!!

Bypassing anti-cheat engines

Why ? The game will detect our
modifications .

Because of Anti-Cheats !!!

Bypassing anti-cheat engines

The most popular anti-cheats are:

Valve anti cheat

SXE injected

Aequitas

BlackEye

Custodia

SSClient

GameGuard

…

Bypassing anti-cheat engines

The most popular are SXE and VAC and we
will focus on them.

Bypassing anti-cheat engines

Bypassing the SXE-Injected !

Bypassing anti-cheat engines

Main feature of these programs are :

. Anti-Wallhack

. 16bpp detection

. Screenshot

. Local ban

. Speed hack detection

. Model modification detection

. Behavior detection

Bypassing anti-cheat engines

How will they do it ?

By HOOKING. For example, if you remember
correctly we talked about wallhack and how
we implemented it. An anti cheat will hook
necessary functions for wall hack and if you
want to hook them again it will detect you.
Also for more security SXE will use Ring0
SSDT hooks for not allowing you to unhook
those functions.

Bypassing anti-cheat engines

We can use kernel detective to detect
hooks .

Bypassing anti-cheat engines

As you can see ddsxei.sys is responsible for
Ring0 hooks and it will hooks some functions
like NtprotectVirtualMemory and
NtReadVirtualMemory by hooking these
functions it will not be possible to unhook
Ring3 hooks due to we need
WriteProcessMemory and ReadProcessMemory.
So what we should do?! There is a bypass.
SXE won’t load its driver on X64 systems !
So on x64 systems you need only understand
Ring3 hooks and unhook them.

Bypassing anti-cheat engines

But it’s only for x64 systems what about
32bit systems ? Well it’s still possible to
unhook functions? You need to write a
windows Driver to unhook them. We used
modified version of Antimida driver by
Daniel Pistelli.

Bypassing anti-cheat engines

We changed driver code, removes some
sections and add more functions like
following one:

case CODE_VIRTUAL_PROTECT:

 {

 Input_ZwProtectVirtualMemory Input;

 RtlCopyMemory(&Input, pInput, sizeof (Input_ZwProtectVirtualMemory));

 __try

 {

 RtlCopyMemory(&Input, pInput, sizeof (Input_ZwProtectVirtualMemory));

 }

 __except (EXCEPTION_EXECUTE_HANDLER)

 {

 DbgPrint("Exception occured: 0x%08X\n");

 return STATUS_UNSUCCESSFUL;

 }

 DbgPrint("ZwProtectVirtualMemory is called");

 return pZwProtectVirtualMemory(Input.ProcessHandle, Input.BaseAddress,

 Input.NumberOfBytesToProtect, Input.NewAccessProtection,
Input.OldAccessProtection);

 }

Bypassing anti-cheat engines

Even simple DLL injection won’t work here.
it means we can’t use CreateRemoteThread
method because of hooking
WriteProcessMemory by sXe Injected; but
there is at least two ways to bypass it .

 1. Using system-wide hooks

 2. restoring WriteProcessMemory hook to
make CreateRemoteThread method avaliable

Bypassing anti-cheat engines

Here is example of using system-wide hooks

BOOL InjectDll(char *dllName, DWORD dwTid)

{

 HMODULE hDll = LoadLibraryA(dllName);

 unsigned long pCBTProc = (DWORD) GetProcAddress(hDll, "CBTProc");

 unsigned long pGetMsgProc = (DWORD) GetProcAddress(hDll,
"GetMsgProc");

 unsigned long pLowLevelKeyboardProc = (DWORD) GetProcAddress(hDll,
"LowLevelKeyboardProc");

 SetWindowsHookEx(WH_CBT, (HOOKPROC)pCBTProc, hDll, dwTid);

 SetWindowsHookEx(WH_GETMESSAGE, (HOOKPROC)pGetMsgProc, hDll, dwTid);

 SetWindowsHookEx(WH_KEYBOARD_LL, (HOOKPROC)pLowLevelKeyboardProc, hDll,
dwTid);

 return TRUE;

}

Bypassing anti-cheat engines

For restoring CreateRemoteThread method
you need unhook these functions in Ring0.

NtQuerySystemInformation

NtopenProcess

NtProtectVirtualMemory

NtWriteVirtualMemory

NtCreateThread

Sxe-Injected hooks NtProtectVirtualMemory
to prevent changes in memory permissions
of following file names: hl.exe, cstrike.exe
czero.exe, day of defeat.exe, and rev-
hl.exe

Bypassing anti-cheat engines

Sxe-Injected calls NtDeviceIoControlFile
to create a unique HID that will be used
for local ban.

Sxe-injected.exe itself and sxe.dll are
protected by latest version of Themida (wl)

SXE.dll is main protector / hooker which
detects and kicks / bans you out of game.

Bypassing anti-cheat engines

OEP of SXE.dll (semi-unpacking for doing
patches)

Bypassing anti-cheat engines

Now lets talk about SXE-Injected user
mode hooks for breaking all your debugging
programs. It hooks:

DbgBreakpoint

DbgUiRemoteBreakin

So before unhooking them you can’t even
attach a debugger to HL process that been
protected by SXE.dll .

Bypassing anti-cheat engines

SXE-Injected also hooks VirtualProtect in
user mode to prevent memory permission
changes. This technique easily disables most
of public cheats which need to patch some
memory addresses. It’s also the main part
of protection in x64 systems. Unhooking this
API is necessary for patching the code of
sxe.dll.

Bypassing anti-cheat engines

SXE-Injected user mode hooks for breaking
all your removal smoke / flash / is all
about it hooks to Opengl functions.
 hl.exe!OPENGL32.dll->glBegin

 hl.exe!OPENGL32.dll->glEnd

 hl.exe!OPENGL32.dll->glVertex2f

 hl.exe!OPENGL32.dll->glVertex2fv

 hl.exe!OPENGL32.dll->glVertex3f

 hl.exe!OPENGL32.dll->glVertex3fv

 hl.exe!OPENGL32.dll->glDisable

 hl.exe!OPENGL32.dll->glEnable

 hl.exe!OPENGL32.dll->glPopMatrix

 hl.exe!OPENGL32.dll->glPushMatrix

 hl.exe!OPENGL32.dll->glPolygonOffset

 hl.exe!OPENGL32.dll->glClear

 hl.exe!OPENGL32.dll->glCullFace

 hl.exe!OPENGL32.dll->glFrontFace

 hl.exe!OPENGL32.dll->glPolygonMode

 hl.exe!OPENGL32.dll->glShadeModel

 hl.exe!OPENGL32.dll+0x2FAE

 hl.exe!OPENGL32.dll->glDepthMask

 hl.exe!OPENGL32.dll->glDepthFunc

 hl.exe!OPENGL32.dll->glDepthRange

Bypassing anti-cheat engines

You can find these functions by available
programs like hookshark .

Bypassing anti-cheat engines

After you found them it’s time to inject a
DLL to game and unhook which SXE hooks
there is again at least two ways to doing it:

1. Patching SXE detours

2.Unhook API completely

Bypassing anti-cheat engines

The detour of hooks set by sxe.dll checks
for black listed arguments of functions.
Here is the VirtualProtect detour:

Bypassing anti-cheat engines

As the detour code is too simple, its
bypass is too simple as well. By nopping all
instructions before original instructions of
hooked function, it can be bypassed easily.
Just we need to read 5 bytes at the start
of function, calculates the address of JMP
to find the address of detour, and patch
first 0x22 bytes to NOP.

Bypassing anti-cheat engines

Here is the code snippet for patching SXE
detour :
BOOL PatchSxeDetour(HANDLE hProc, char* DllName, char* APIName, DWORD HlAddr)

{

 DWORD AddrHook = 0;

 if (HlAddr == NULL)

 {

 AddrHook = (DWORD)GetProcAddress(GetModuleHandle(DllName), APIName);

 }

 else if (DllName == NULL && APIName == NULL)

 {

 AddrHook = HlAddr;

 }

 DWORD JMPtoSxeAddr = 0, SxeHookCode = 0, nBytesRead = 0;

 BYTE Nop = 0x90;

 int i = 0;

 char DebugMessage[100] = {" "};

 if (!AddrHook)

 {

 wsprintf(DebugMessage,"Fail to get address of %s", APIName);

 OutputDebugString(DebugMessage);

 return FALSE;

 }

Bypassing anti-cheat engines
ReadProcessMemory (hProc, (LPVOID) (AddrHook + 1), &JMPtoSxeAddr, sizeof(DWORD),
&nBytesRead);

 SxeHookCode = 5 + AddrHook + JMPtoSxeAddr;

 SxeUnhooked = SxeHookCode;

 for (i=0; i<0x22; i++)

 {

 WriteProcessMemory(hProc, (LPVOID) (SxeHookCode + i), &Nop, 1, &nBytesRead);

 }

 return TRUE;

}

These function will patch SXE.dll Detour you can
use it like:

PatchSxeDetour(hHL, "kernel32.dll", "VirtualProtect", NULL);

PatchSxeDetour(hHL, "opengl32.dll", "glBegin", NULL);

Bypassing anti-cheat engines

It’s also possible (and better) to
completely unhook the API. Here is the
code :
BOOL UnHookAPI(HANDLE hProc, char* DllName, char* APIName, int RestoreLength)

{

 DWORD DllImgBase = (DWORD) GetModuleHandle(DllName);

 DWORD AddrAPI = (DWORD)GetProcAddress((HMODULE)DllImgBase, APIName);

 DWORD nBytesRead = 0;

 DWORD OldProtection = 0;

 char DebugMessage[100] = {" "};

 wsprintf(DebugMessage,"Unhooking %s", APIName);

 OutputDebugString(DebugMessage);

 if (!AddrAPI)

 {

 return FALSE;

 }

 BYTE OriginalBytes[10] = {" "};

 GetFunctionOriginalBytes(DllName, APIName, OriginalBytes, RestoreLength);

 WriteProcessMemory(hProc, (LPVOID) AddrAPI, OriginalBytes, RestoreLength, &nBytesRead);

 wsprintf(DebugMessage,"%s was unhooked.", APIName);

 OutputDebugString(DebugMessage);

 return TRUE;

}

Bypassing anti-cheat engines

GetFunctionOriginalBytes function

BOOL GetFunctionOriginalBytes(char* DllName, char* FunctionName, BYTE* OriginalBytes, int Length)

{

 char Buffer[MAX_PATH];

 GetSystemDirectory(Buffer, MAX_PATH);

 strcat(Buffer, "\\");

 strcat(Buffer, DllName);

 HANDLE hFile = CreateFile(Buffer, GENERIC_READ, FILE_SHARE_READ,

 NULL, OPEN_EXISTING, 0, NULL);

 if (hFile == INVALID_HANDLE_VALUE)

 return FALSE;

 DWORD FileSize = GetFileSize(hFile, NULL);

 BYTE *ptrDll = (BYTE *) VirtualAlloc(NULL, FileSize,

 MEM_COMMIT, PAGE_READWRITE);

 if (ptrDll == NULL)

 {

 CloseHandle(hFile);

 return FALSE;

 }

Bypassing anti-cheat engines

 CloseHandle(hFile);

 IMAGE_DOS_HEADER *ImgDosHdr = (IMAGE_DOS_HEADER *) ptrDll;

 IMAGE_NT_HEADERS *ImgNtHdrs = (IMAGE_NT_HEADERS *)

 &ptrDll[ImgDosHdr->e_lfanew];

 ULONG_PTR EP_Rva = 0;

 if (!GetExport(ptrDll, &EP_Rva, NULL, FunctionName))

 {

 VirtualFree(ptrDll, 0, MEM_RELEASE);

 return FALSE;

 }

 BYTE *ptr = (BYTE *) (EP_Rva + (ULONG_PTR) ptrDll);

 memcpy(OriginalBytes, ptr, Length);

 VirtualFree(ptrDll, 0, MEM_RELEASE);

 return TRUE;

}

Bypassing anti-cheat engines

Also there is note if you join a server with
our modified model (AWP) SXE will detect
it and will kick you from game. SXE will
detect it by getting MD5 Checksum of each
model

Bypassing anti-cheat engines

Again there is at least two ways to bypass
it :

1. Alter the checksum with your model MD5

2.Patch the modification Check routine.

Bypassing anti-cheat engines

For altering the main object with your
object, just calculate the new model MD5
and replace it in SXE.dll using Injection.

Bypassing anti-cheat engines

To completely patch the routine, find the
beginning of the routine contains the MD5
of object and patch first byte to RET. You
can use following code to do that:

// Disable model modification check:

DWORD AddrModelCheck = 0x4010; // offset of patch

 // ImageBase is hSxeDll

BYTE PatchModelCheck [1] = {0xC3};

WriteProcessMemory(hHL, (LPVOID)((DWORD)hSxeDll + AddrModelCheck),
PatchModelCheck, 1, &nBytesWritten);

The hSxeDll is Handle of SXE.dll we can get by using GetModuleHandle which
is the ImageBase of sxe.dll technically.

Bypassing anti-cheat engines

OK, SXE bypassing looks simple, but wait!

It detects memory modifications and hook
removal. We can patch this routine too.

Bypassing anti-cheat engines

And here is the code of patcher.

//Disable sXe memory patch check

DWORD AddrSxeHooker = 0x128B0;

BYTE PatchSxeHooker [1] = {0xC3};

DWORD AddrSxeHookerMagicJump = 0x7AAB6;

WriteProcessMemory(hHL, (LPVOID)((DWORD)hSxeDll + AddrSxeHooker),
PatchSxeHooker, 1, &nBytesWritten);

Bypassing anti-cheat engines

Well there is some other kind of checks in
SXE, but with these unhooking / patching,
we have mutilated SXE to not be useful as
it should be, so we can use almost all
available cheats on SXE to proof it. we
used some old hack and did some
modification to work on modern OS and also
latest SXE and finally finished our job. we
can now do cheat and always be BEST player
in the map !!!

Bypassing anti-cheat engines

DEMO

Cheating in
Protected Server
by both SXE and

VAC !!!

Conclusion

So cheating in online games is not that easy
and needs strong reversing skills as well as
programming . Also anti-cheat can make
you life harder by protecting manipulation
on client side. But at all it’s still possible
to cheat even with latest protections and
online games !!!

Questions ?!

if you have any question

mail it to : shahin@abysssec.com

follow @abysssec in twitter

mailto:shahin@abysssec.com
mailto:shahin@abysssec.com
mailto:shahin@abysssec.com

